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ABSTRACT

In recent years, there has been extensive interest in the
development of artificial electrical or optical materials. By
tailoring the material electrical characteristics, one is able to
control the flow of electromagnetic waves from microwave to
optic frequencies. This paper presents the guided wave
properties of a class of two dimensional photonic crystals
made of periodic dielectric rods. An efficient finite difference
method is developed for the calculation of propagation
constants of guided or evanescent waves in an arbitrary
direction (in-plane or out-of-plane propagation).  The
emphasis is on the existence of photonic bandgaps within
which the in-plane propagation is prohibited.  Possible
applications of  photonic bandgap materials are also
discussed.

L. INTRODUCTION

Wave propagation in periodic structures has been an
important and interesting subject to electromagnetic society
for many decades. Aurtificial diclectrics composed of infinite
arrays of periodic conductors had been proposed for
microwave lens applications [1].  Periodically loaded
waveguides have found applications in a variety of devices
such as traveling-wave tubes, filter networks, and surface
waveguiding devices [2]. Planar printed metallic elements
periodically distributed over the surface of a dielectric layer
have been used in frequency selective surfaces [3] and
integrated phased array antennas [4]. Light interaction with
dust and rain drops and x-ray diffraction from crystals are
also of practical interest related to wave interaction with
randomly distributed periodic structures [5]. A common
feature of periodic structures is the existence of frequency
bands where electromagnetic waves are highly attenuating
and do not propagate. In analogy to an electrical crystal
where periodic atoms or molecules may present a bandgap
prohibiting electron propagation, a photonic crystal is made
of macroscopic dielectrics periodically placed (or embedded)
within a surrounding medium. The periodic nature of the
structure may introduce photonic band gap (PBG) within
which photons {(wave propagation) are forbidden in certain
directions.
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The concept of photonic band gap introduced by
Yablonovitch in 1987 [6] for semiconductor lasers and for
photonic applications [7-8] has stimulated significant research
interest among physicists. A summary of the up-to-date
research on this subject can be found in [9]. Photonic crystal
research is motivated by the consensus that optical, or more
general, electromagnetic technologies may benefit from
photonic crystals in a similar way electronic technology
benefits from semiconductors.

In the past, most of the two dimensional (ZD) photonic
crystals analyzed are for circular columns and with a plane
wave expansion method. In this paper, a class of 2D
photonic crystals made of periodic arrays of irregular rods are
investigated with a finite difference method. The structure
can be made with conventional machine tools in the
centimeter range and with micromachine technique in the
micron range. The guided wave modes within such a
structure are identified with emphasis on the search of a
complete bandgap where wave propagation is prohibited in
all the in-plane directions.

For 2D photonic crystals, the geometry is uniform along the
longitudinal (z ) direction and periodic in the transverse (in-
plane) direction with lattice constants a and b. Unit cells of
examples of photonic crystals under investigation are shown
in Figure 1. The geometry is somewhat similar to periodic
arrays of dielectric waveguides. However, we are interested
in wave propagation in the transverse plane where, due to the
periodic property, wave propagation may be prohibited.

II. FINITE DIFFERENCE ANALYSIS
DIMENSIONAL PERIODIC STRUCTURES

OF TWO-

An efficient finite difference method for periodic structures is
developed for the computation of propagation constants of
guided wave propagating in arbitrary directions. Field
analysis of waveguide structures usually deals with Helmholtz
equations, in terms of two of the six field components. In
finite element or finite difference method, H-field formulation
is more preferable due to the fact that magnetic field is
continuous. In this analysis, the Hy and H yformulation is

employed to avoid possible spurious-mode problem [10].
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The Helmholtz equations of the pertinent problem are
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where B, is the phase constant in the £ direction,

ki = k()\/a_'_ , kg is the free space wave number, and €; is

the dielectric constant in region i. In finite difference method,
the unit cell 0<x<a and 0< y<b is divided into many

rectangular grids. The common point of four adjacent grids is
a central node where Hyand H yare related to those of the

adjacent nodes through a five-point finite difference equation.
The five-point finite difference form of a Helmoholiz equation
for four connected grids with different dielectric constants
can be found in Reference [10]. A finite difference equation
is to relate the fields at one central node to the four adjacent
nodes. If there are M nodes in each side of a unit cell, there

are 2M? finite difference equations with 2M 2 unknowns.
For the central nodes at the boundary, some of the adjacent
nodes are out of the unit cell and can be brought back into the
unit cell utilizing the periodic nature of the structure.
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O(x+a,y+b)=e O(x,y) (3)

where ®(x,y) is any field component, B, and B y are the
phase constants in the x¥ and y directions, respectively. The

2M2 finite difference equations form a set of linear
homogeneous equations or matrix equations. The eigenvalue
equation is obtained by setting the matrix determinant to
zero. The roots of the eigenvalue equation are frequencies
for a given the phase constants of the waves propagating
within the photonic crystals.

In numerical implementation, the direct approach using
Gaussian elimination is not practical.  For the bisection
method of finding the roots, it often require many iterations.
For a unit cell with 400 grids (20 divisions in each direction),
the matrix dimension would be 882. The required computer
memory and time for each iteration are enormous. An
alternate approach is to utilize the matrix sparsity in the QR
procedure. The matrix is band-diagonal except the last few
rows and columns due to the periodic properties of the finite-
difference cells. A modified QR procedure to deal with this

kind of matrix is developed. For 2M? nodes, the matrix
dimension is reduced to 4M-2 and the required Gaussian

elimination procedure is reduced to (4M — 2)2 +(4M-2)!.
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Figure 1. Cross sections of unit cells of examples of two dimensional
photonic crystals. Structures are uniform in the z direction.

OI. RESULTS FOR GUIDED WAVES AND
PHOTONIC BAND GAPS

It is known for dielectric waveguides that propagating waves
are hybrid. However, for in-plane propagation (wave vector
in the transverse plane), the guided wave modes can be
decoupled into either TE or TM modes (to the z) with no z
variation. The coordinates are shown in Figure 1. The
finite difference method is general enough to deal with a
variety of irregular photonic crystal structures. The accuracy
and validity of the finite difference analysis are checked in
excellent agreement with the results shown in Reference [9]
where a plane wave expansion method is used.

It is known that there may exist photonic band gap for 2D
periodic material structures where all the in-plane
propagation is prohibited. The engineering applications of
such photonic band-gap materials would result in devices
with new functionalities, not possible otherwise, such as
optical shield, low-loss photonic waveguides, optical high-Q
resonators, optical transducers, directional couplers, etc..
Signature alternation and identification, ultra-high gain
antennas, laser emission and protection are some other
applications.

The photonic band structure for periodic dielectric squares is
shown in Figure 2 for both TE and TM modes. The
horizontal axis in Figure 2 is for the phase constants of
guided wave modes in various directions. Due to the
symmetric and periodic properties, only the shade region in
the Brillouin zone (the wave number space or the reciprocal
lattice) is irreducible. For example, the phase constants in the
%,¥,~%, and —§ direction propagation are the same. It is



also seen from Figure 2 that there exists a wide band
(photonic gap) for TM waves (but not for TE waves) where
wave propagation is prohibited in all directions. In contrast,
air squares surrounded by high dielectrics (dielectric veins)
result in a wide band gap for TE waves but not for TM
waves. The location and the width of the band gap are
determined by the dielectric constant and the filling factor
(percentages of the implant occupancy). Within the band
gap region, the propagation modes become pairs of complex
modes [11] that do not carry energy.

The photonic band structure for periodic dielectric crosses is
shown in Figure 3. One can also treat this geometry as
broken dielectric veins with air gap 13% of the cell width
(cross length extends 87% of the cell). It is seen that there
exist photonic band gaps for both TE and TM waves. This is
because dielectric veins tend to have TE band gap, while
dielectric implants tend to have TM band gap. Dielectric
crosses with long arms resemble both cases. It is found that
the band gap width is mainly determined by the air gap.
Usually, the smaller the air gap is (more like a vein), the
larger the TE gap and the smaller the TM gap would be. For
the case shown in Figure 3, if the cell size is 1 cm, the TM
band gap is from 9 GHz to 9.4 GHz, and the TE band gap is
from 13.3 GHz to 13.9 GHz.

An example of band structure for the oblique direction of
propagation (out-of-plane) is shown in Figure 4 for crystals
with square dielectrics. The z direction phase-constant is
assumed as 1/a. It is noted that, due to the homogeniety in
the logitudinal direction, there is no photonic gap. The
geometry of the structure is identical to that for Figure 2.
Several interesting observations are found from the
comparison of these two Figures. For out-of-plane
propagation, the modes are hybrid and only the first two
fundamental modes (not the rest) are very different from
those for in-plane-propagation. It is seen from Figure 4 that
there exists transverse mode cut-off.  This is no surprise
since if we specify the longitudinal phase constant, the
frequency can not be arbitrary. ,The other explanation is that
if we specify the longitudinal wave number, equivalently, we
are dealing with the higher order modes of parallel plates
containing photonic crystals. Cut-off frequency does exist in
parallel-plates for non-TEM modes.
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Figure 2. The photonic band structure for the first few modes
of dielectric squares €, =89 surrounded by air. The square
length: 0.3545a. The horizontal axis is for wave numbers in
various directions. (I', X, M are symmetric points in Brillouin
zone shown in the inset).
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Figure 3. The photonic band structure for the first few
modes of dielectric crosses ¢, = 8.9 surrounded by air.
The cross length: 0.87a, width: 0.181a.
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Figure 4. The photonic band structure for the first six modes
of dielectric squares ¢, = 8.9 surrounded by air.
The square length: 3545a. Out-of-Plane Propagation 3, = 1/a.
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