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ABSTRACT

In recent years, there has been extensive interest in the

development of artificial electrical or optical materials. By

tailoring the material electrical characteristics, one is able to

control the flow of electromagnetic waves from microwave to

optic frequencies. This paper presents the guided wave

properties of a class of two dimensional photonic crystids

made of periodic dielectric rods. An efficient fiiite difference

method is developed for the calculation of propagation

constants of guided or evanescent waves in an arbitrary

direction (in-plane or out-of-plane propagation). The

emphasis is on the existence of photonic bandgaps within

which the iu-plane propagation is prohibited. Possible

applications of photonic bandgap materials are also

discussed.

I. INTRODUCTION

Wave propagation in periodic structures has been an

important and interesting subject to electromagnetic society

for many decades. Artificial dielectrics composed of infiite

arrays of periodic conductors had been proposed for

microwave lens applications [1]. Periodically loaded

waveguides have found applications in a variety of devices

such its traveling-wave tubes, fiiter networks, and surface

waveguiding devices [2]. Planar printed metallic elements

periodically distributed over the surface of a dielectric layer

have been used in frequency selective surfaces [3] and

integrated phased array antennas [4]. Light interaction with

dust and rain drops and x-ray diffraction from crystals are

also of practical interest related to wave interaction with

randomly distributed periodic structures [5]. A common

feature of periodic structures is the existence of frequency

bands where electromagnetic waves are highly attenuating

and do not propagate. In analogy to an electrical crystal

where periodic atoms or molecules may present a bandgap

prohibiting electron propagation, a photonic crystal is made

of macroscopic dielectrics periodically placed (or embedded)

within a surrounding medium. The periodic nature of the

structure may introduce photonic band gap (PBG) within

which photons (wave propagation) are forbidden in certain

directions.

The concept of photonic band gap introduced by

Yablonovitch in 1987 [6] for semiconductor lasers and for

photonic applications [7-8] has stimulated !signitlcant research

interest among physicists. A summary of the up-to-date

research on this subject can be found in [9/. Photonic crystal

research is motivated by the consensus that optical, or more

general, electromagnetic technologies may benefit from

photonic crystals in a similar way electronic technology

benefits from semiconductors.

In the past, most of the two dimensional (2D) photonic
crystals analyzed are for circular columns and with a plane
wave expansion method. In this paper, a class of 2D

photonic crystals made of periodic arrays of irregular rods are
investigated with a fiiite difference method. The structure
can be made with conventional machine tools in the

centimeter range and with micromachine technique in the

micron range. The guided wave modes within such a

structure are identitled with emphasis on the search of a

complete bandgap where wave propagation is prohibited in

all the in-plane directions.

For 2D photonic crystals, the geometry is uniform along the

longitudinal ( i ) direction and periodic in the transverse (in-

plane) direction with lattice constants a and b. Unit cells of
examples of photonic crystals under investigation are shown
in Figure 1. The geometry is somewhat similar !O periodic
arrays of dielectric waveguides. However, we are interested
in wave propagation in the transverse plane where, due to the
periodic property, wave propagation may be prohibited.

II. FINITE DIFFERENCE ANALYSIS OF TWO-
DIMENSIONAL PERIODIC STRUCTtJRES

An efficient fiite difference method for periodic si,rttctures is

developed for the computation of propagation constants of

guided wave propagating in arbitrary directions. Field

anaJysis of waveguide structures usually deals with Helmholtz

equations, in terms of two of the six tielld components. In

fimite element or finite difference method,” H-field formulation

is more preferable due to the fact that magnetic field is

continuous. b this analysis, the Hx and H y formulation k

employed to avoid possible spurious-mode problem [10].
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The Helmholtz equations of the pertinent problem are

a 240 J 240

+
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(1)

(2)

where ~ ~ is the phase constant in the ? direction,

ki = ko&, ko is the free space wave number, and E i k

the dielectric constant in region i. In fiite difference method,

the unit cell 05 x < a and 05 y < b is divided into many

rectangular grids. The common point of four adjacent grids is

a centraf node where Hx and Hy are related to those of the

adjacent nodes through a five-point fiite difference equation.

The five-point finite difference form of a Helmoholtz equation

for four connected grids with different dielectric constants

can be found in Reference [10]. A fiite difference equation

is to relate the fields at one central node to the four adjacent

nodes. If there are M nodes in each side of a unit cell, there

are 2M2 finite difference equations with 2M2 unknowns.

For the central nodes at the boundary, some of the adjacent

nodes are out of the unit cell and can be brought back into the

unit cell utilizing the periodic nature of the structure.

CD(x+a, y+b)=e
-~Pxa-~B Ybo(x, y, (3)

where ID(x, y) is any field component, ~ x and ~ y are the

phase constants in the .i and ~ directions, respectively. The

2M2 fiite difference equations form a set of linear

homogeneous equations or matrix equations. The eigenvalue

equation is obtained by setting the matrix determinant to

zero. The roots of the eigenvalue equation are frequencies

for a given the phase constants of the waves propagating

within the photonic crystals.

In numerical implementation, the direct approach using

Gaussian elimination is not practical. For the bisection

method of finding the roots, it often require many iterations.

For a unit cell with 400 grids (20 divisions in each direction),

the matrix dimension would be 882. The required computer

memory and time for each iteration are enormous. An

alternate approach is to utilize the matrix sparsity in the QR

procedure. The matrix is band-diagonal except the last few

rows and columns due to the periodic properties of the fmite-

difference cells. A modified QR procedure to deal with this

kind of matrix is developed. For 2M2 nodes, the matrix

dimension is reduced to 4M-2 and the required Gaussian

elimination procedure is reduced to (4M – 2)2 + (4M – 2) ! .
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Figure 1. Cross sections of umt cells of examples of two dimensional
photonic crystals. Structures are uniform m the z direction.

m. RESULTS FOR GUIDED WAVES AND
PHOTONIC BAND GAPS

It is known for dielectric waveguides that propagating waves

are hybrid. However, for in-plane propagation (wave vector

in the transverse plane), the guided wave modes can be

decoupled into either TE or TM modes (to the z) with no z

variation. The coordinates are shown in Figure 1. The

finite difference method is general enough to deal with a

variety of irregular photonic crystal structures. The accuracy

and validity of the ftite difference analysis are checked in

excellent agreement with the results shown in Reference [9]

where a plane wave expansion method is used.

It is known that there may exist photonic band gap for 2D

periodic material structures where all the in-plane
propagation is prohibited. The engineering applications of

such photonic band-gap materials would result in devices

with new functionalities, not possible otherwise, such as

optical shield, low-loss photonic waveguides, opticaf high-Q

resonators, optical transducers, directional couplers, etc..

Signature alternation and identification, ultra-high gain

antennas, laser emission and protection are some other

applications.

The photonic band structure for periodic dielectric squares is

shown in Figure 2 for both TE and TM modes. The

horizontal axis in Figure 2 is for the phase constants of

guided wave modes in various directions. Due to the

symmetric and periodic properties, only the shade region in

the Brillonin zone (the wave number space or the reciprocal

lattice) is irreducible. For example, the phase constants in the

i, j,–.i?, and –$ direction propagation are the same. It is
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also seen from Figure 2 that there exists a wide band

(photonic gap) for TM waves (but not for TE waves) where

wave propagation is prohibited in alldirections. In contrast,

air squares surrounded by high dielectrics (dielectric veins)

result in a wide band gap for TE waves but not for TM

waves. The location and the width of the band gap are

determined by the dielectric constant and the filling factor

(percentages of the implant occupancy). Within the band

gap region, the propagation modes become pairs of complex

modes [11] that do not carry energy.

The photonic band stmcture for periodic dielectric crosses is

shown in Figure 3. One can also treat this geometry as

broken dielectric veins with air gap 13% of the cell width

(cross length extends 87% of the cell). It is seen that there

exist photonic band gaps for both TE and TM waves. ‘IMs is

because dielectric veins tend to have TE band gap, while

dielectric implants tend to have TM band gap. Dielectric

crosses with long arms resemble both cases. It is found that

the band gap width is mainly determined by the air gap.

Usually, the smaller the air gap is (more like a vein), the

larger the TE gap and the smaller the TM gap would be. For

the case shown in Figure 3, if the cell size is 1 cm, the TM

band gap is from 9 GHz to 9.4 GHz, and the TE band gap is

from 13.3 GHz to 13.9 GHz.

An example of band structure for the oblique direction of

propagation (out-of-plane) is shown in Figure 4 for crystals

with square dielectrics. The z direction phase-constant is

assumed as l/a. It is noted that, due to the homogeniety in

the longitudinal direction, there is no photonic gap. The

geometry of the structure is identical to that for Figure 2.

Severrd interesting observations are found from the

compaison of these two Figures. For out-of-plane

propagation, the modes are hybrid and only the first two

fundamental modes (not the rest) are very different from

those for in-plane-propagation. It is seen from Figure 4 that

there exists transverse mode cut-off. This is no surprise

since if we specify the longitudinal phase constant, the

frequency can not be arbitrary. ,The other explanation is that

if we specify the longitudinal wave number, equivalently, we

are dealing with the higher order modes of parallel plates

containing photonic crystals. Cut-off frequency does exist in

parallel-plates for non-TEM modes.
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Figure 3. The photonic band structure for the first few
modes of dielectric crosses er = 8.9 surrounded by air.
The cross length: 0.87a, width: 0.181a.
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Figure4. Thephotonic band structure for the first six modes

of dielectric squares ~, = 8.9 surrounded by air.

The square length: 3545a. Out-of-Plane Propagation ~, = l/a.
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